quadrature scheme - définition. Qu'est-ce que quadrature scheme
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est quadrature scheme - définition

NUMERICAL INTEGRATION
Gaussian integration; Gaussian numerical integration; Gauss quadrature; Gauss legendre quadrature; Gaussian Quadrature; Gauss–Lobatto quadrature; Gauss-Lobatto quadrature
  • 2}} – 3''x'' + 3}}), the 2-point Gaussian quadrature rule even returns an exact result.
  • ''n'' {{=}} 5)}}

R4RS         
DIALECT OF THE LISP PROGRAMMING LANGUAGE
Scheme Links; R5RS; R4RS; R6RS; Set!; Scheme Programming language; Scheme progamming language; Scheme programming language; R5RS Scheme; Err5rs; ERR5RS; Scheme language; LAML; Scheme (language); RnRS; R7RS; Dr. Scheme; Scheme Lisp
A revision of R3RS, revised in R3.99RS. ftp://altdorf.ai.mit.edu/. ["The Revised^4 Report on the Algorithmic Language Scheme", W. Clinger et al, MIT (Nov 1991)]. (1994-10-28) [Later revisions?]
MIT Scheme         
A SCHEME IMPLEMENTATION WITH INTEGRATED EDITOR AND DEBUGGER
MIT Scheme; Edwin (editor); Mit-scheme
<language> (Previously "C-Scheme") A Scheme implementation by the MIT Scheme Team (Chris Hanson, Jim Miller, Bill Rozas, and many others) with a rich set of utilities, a compiler called Liar and an editor called Edwin. MIT Scheme includes an interpreter, large {run-time library}, Emacs macros, native-code compiler, emacs-like editor, and a source-level debugger. Latest version: 7.7.1, as of 2002-06-18. MIT Scheme conforms fully with R4RS and almost with the IEEE Scheme standard. It runs on Motorola 68000: HP9000, Sun-3, NeXT; MIPS: Decstation, Sony, SGI; HP-PA: 600, 700, 800; VAX: Ultrix, BSD, DEC Alpha: OSF; Intel i386: MS-DOS, MS Windows, and various other Unix systems. See also: LAP, Schematik, Scode. scheme/">http://gnu.org/software/mit-scheme/. Usenet newsgroup: news:comp.lang.scheme.c. Mailing list: mit-scheme-announce@gnu.org (cross-posted to news). E-mail: <mit-scheme-devel@gnu.org> (maintainers). (2003-08-14)
Quadrature         
WIKIMEDIA DISAMBIGUATION PAGE
Quadrature (disambiguation)
Waves or periodic motions the angle of lag of one of which, with reference to one in advance of it, is 90°, are said to be in quadrature with each other. [Transcriber's note: If the voltage and current of a power line are in quadrature, the power factor is zero (cos(90°) = 0)  and no real power is delivered to the load.]

Wikipédia

Gaussian quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as

1 1 f ( x ) d x i = 1 n w i f ( x i ) , {\displaystyle \int _{-1}^{1}f(x)\,dx\approx \sum _{i=1}^{n}w_{i}f(x_{i}),}

which is exact for polynomials of degree 2n − 1 or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1].

The Gauss-Legendre quadrature rule is not typically used for integrable functions with endpoint singularities. Instead, if the integrand can be written as

f ( x ) = ( 1 x ) α ( 1 + x ) β g ( x ) , α , β > 1 , {\displaystyle f(x)=\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x),\quad \alpha ,\beta >-1,}

where g(x) is well-approximated by a low-degree polynomial, then alternative nodes xi' and weights wi' will usually give more accurate quadrature rules. These are known as Gauss-Jacobi quadrature rules, i.e.,

1 1 f ( x ) d x = 1 1 ( 1 x ) α ( 1 + x ) β g ( x ) d x i = 1 n w i g ( x i ) . {\displaystyle \int _{-1}^{1}f(x)\,dx=\int _{-1}^{1}\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x)\,dx\approx \sum _{i=1}^{n}w_{i}'g\left(x_{i}'\right).}

Common weights include 1 1 x 2 {\textstyle {\frac {1}{\sqrt {1-x^{2}}}}} (Chebyshev–Gauss) and 1 x 2 {\displaystyle {\sqrt {1-x^{2}}}} . One may also want to integrate over semi-infinite (Gauss-Laguerre quadrature) and infinite intervals (Gauss–Hermite quadrature).

It can be shown (see Press, et al., or Stoer and Bulirsch) that the quadrature nodes xi are the roots of a polynomial belonging to a class of orthogonal polynomials (the class orthogonal with respect to a weighted inner-product). This is a key observation for computing Gauss quadrature nodes and weights.